Simulating Solute Transport in Porous Media Using Model Reduction Techniques
نویسندگان
چکیده
In this study, we introduce a numerical method to reduce the solute transport equation into a reduced form that can replicate the behavior of the model described by the original equation. The basic idea is to collect an ensemble of data of state variables (say, solute concentration), called snapshots, by running the original model, and then use the proper orthogonal decomposition (POD) techniques (or the Karhunen-Loeve decomposition) to create a set of basis functions that span the snapshot collection. The snapshots can be reconstructed using these basis functions. The solute concentration at any time and location in the domain is expressed as a linear combination of these basis functions, and a Galerkin procedure is applied to the original model to obtain a set of ordinary differential equations for the coefficients in the linear representation. The accuracy and computational efficiency of the reduced model have been demonstrated using several one-dimensional and two-dimensional examples.
منابع مشابه
Two-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملTwo-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملEstimation of zeolite application effect on solute transport parameters at different soils using HYDRUS-1D model
ABSTRACT-Application of models for simulation of solute and pollutants transport in soil can reduce time and costs for remediation process. HYDRUS-1D model was developed to simulate the one–dimensional flow of soil water, heat, solute and viruses in variably saturated–unsaturated porous media. The objective of this investigation is to determine the solute transport parameters in disturbed soil ...
متن کاملRandom-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods
The random-walk method for simulating solute transport in porous media is typically based on the assumption that the velocity and velocity-dependent dispersion tensor vary smoothly in space. However, in cases where sharp interfaces separate materials with contrasting hydraulic properties, these quantities may be discontinuous. Normally, velocities are interpolated to arbitrary particle location...
متن کاملبرآورد انتقال بخار آب در خاکهای غیراشباع تحت تأثیر پتانسیل اسمزی
The transport process of chemical-fertilizers, radioactive materials and other solutes in soils and porous media is important to understand the environmental and economic effects of industrial, agricultural and urban waste disposal methods. In unsaturated porous media, large gradient in aqueous osmotic potential derives significant water vapor fluxes towards regions of high solute concentration...
متن کامل